Mannosyl-diinositolphospho-ceramide, the major yeast plasma membrane sphingolipid, governs toxicity of Kluyveromyces lactis zymocin.
نویسندگان
چکیده
Kluyveromyces lactis zymocin, a trimeric (alphabetagamma) protein toxin complex, inhibits proliferation of Saccharomyces cerevisiae cells. Here we present an analysis of kti6 mutants, which resist exogenous zymocin but are sensitive to intracellular expression of its inhibitory gamma-toxin subunit, suggesting that KTI6 encodes a factor needed for toxin entry into the cell. Consistent with altered cell surface properties, kti6 cells resist hygromycin B, syringomycin E, and nystatin, antibiotics that require intact membrane potentials or provoke membrane disruption. KTI6 is allelic to IPT1, coding for mannosyl-diinositolphospho-ceramide [M(IP)(2)C] synthase, which produces M(IP)(2)C, the major plasma membrane sphingolipid. kti6 membranes lack M(IP)(2)C and sphingolipid mutants that have reduced levels of M(IP)(2)C precursors, including the sphingolipid building block ceramide survive zymocin. In addition, kti6/ipt1 cells allow zymocin docking but prevent import of its toxic gamma-subunit. Genetic analysis indicates that Kti6 is likely to act upstream of lipid raft proton pump Kti10/Pma1, a previously identified zymocin sensitivity factor. In sum, M(IP)(2)C operates in a plasma membrane step that follows recognition of cell wall chitin by zymocin but precedes the involvement of elongator, the potential toxin target.
منابع مشابه
Zymocin, a composite chitinase and tRNase killer toxin from yeast.
Growth inhibition of Saccharomyces cerevisiae by the plasmid-encoded trimeric (alphabetagamma) zymocin toxin from dairy yeast, Kluyveromyces lactis, depends on a multistep response pathway in budding yeast. Following early processes that mediate cell-surface contact by the chitinase alpha-subunit of zymocin, later steps enable import of the gamma-toxin tRNase subunit and cleavage of target tRNA...
متن کاملDosage suppression of the Kluyveromyces lactis zymocin by Saccharomyces cerevisiae ISR1 and UGP1.
The Kluyveromyces lactis zymocin complex kills Saccharomyces cerevisiae cells in a process that involves tRNA cleavage by its tRNAse gamma-toxin subunit. In contrast to the gamma-toxin mode of action, the early steps of the zymocin response are less well characterized. Here, we present high-dosage suppressors of zymocin that encode a putative Pkc1-related kinase (ISR1) and UDP-glucose pyrophosp...
متن کاملDNA Damage Responses Are Induced by tRNA Anticodon Nucleases and Hygromycin B
Previous studies revealed DNA damage to occur during the toxic action of PaT, a fungal anticodon ribonuclease (ACNase) targeting the translation machinery via tRNA cleavage. Here, we demonstrate that other translational stressors induce DNA damage-like responses in yeast as well: not only zymocin, another ACNase from the dairy yeast Kluyveromyces lactis, but also translational antibiotics, most...
متن کاملSit4p protein phosphatase is required for sensitivity of Saccharomyces cerevisiae to Kluyveromyces lactis zymocin.
We have identified two Saccharomyces cerevisiae genes that, in high copy, confer resistance to Kluyveromyces lactis zymocin, an inhibitor that blocks cells in the G(1) phase of the cell cycle prior to budding and DNA replication. One gene (GRX3) encodes a glutaredoxin and is likely to act at the level of zymocin entry into sensitive cells, while the other encodes Sap155p, one of a family of fou...
متن کاملUse of a Yeast tRNase Killer Toxin to Diagnose Kti12 Motifs Required for tRNA Modification by Elongator
Saccharomyces cerevisiae cells are killed by zymocin, a tRNase ribotoxin complex from Kluyveromyces lactis, which cleaves anticodons and inhibits protein synthesis. Zymocin's action requires specific chemical modification of uridine bases in the anticodon wobble position (U34) by the Elongator complex (Elp1-Elp6). Hence, loss of anticodon modification in mutants lacking Elongator or related KTI...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Eukaryotic cell
دوره 4 5 شماره
صفحات -
تاریخ انتشار 2005